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Abstract: OEM (original equipment manufacturers) Supply Chain Management always require a mechanism to ensure trust via contract 
methods and intelligent allocation of delivery load & logistics to save cost. Smart Contracts on Blockchain technologies is one of the best 
suited mechanisms to ensure trust in contracts. These contracts are immutable and transparent to related participants. There are multiple 
optimization methods being used in the industry to address demand allocation problems but as the size of the problem grows most of the 
methods become inefficient in performance and practicality. We formulate MDP (Markov Decision Process) to model this situation 
.Problem of dimensions increasing due to state and action increment as the horizon increases has been described as “Curse of 
Dimensionality” by Bellman who addressed the problem with condition of optimality. Policy Iteration algorithm is a known methodology in 
reinforcement learning that addresses the problem of decision making by formulating a deterministic in cost or reward and probabilistic in 
state transition model that solves a stochastic optimization. Implementation described in this paper has been achieved on Google Cloud 
Platform using Hyperledger Fabric, Node-Red and R Server. The text describes the stack architecture, flow and algorithm and also 
focuses upon cost viability of the solution. 

Index Terms:  Artificial Intelligence, Markov Decision Process, Policy Iteration, Hyperledger, Smart Contract, Blockchain, 
Distribution System

 

1. INTRODUCTION 

Smart distribution systems and contract management is 
indispensable for the business in Supply Chain 
Management. So the contracts between the Logistics partners 
and Warehouse distribution system requires a method that 
can smartly manage the contracts as “law-of-code” and is 
immutable. 

Blockchain based application are gaining momentum in 
SCM domain due to distributed application nature and 
contracts being executed upon rules and security of the 
artefacts. The participants cannot change what has been 
committed to the chain and hence immutability is one core 
strength of Blockchain applications. Participants only have a 
choice of being or not being part of the network.  

To allocate demand and plan distribution of the assets to the 
customers or destinations require an optimization based 
upon cost of the delivery and SLA. 

---------------------------------------------------------------------------- 

“Authors are member of Professional Services Group at TIBCO 
Software India” 

 

There are a few methods that involve linear programming 
approach but are deterministic and do not address sub-
problem scenarios .Hence they can’t be implemented for 
real-time systems.  

There are algorithms that are widely used in Artificial 
Intelligence domain like Markov Decision Process with 
Policy Iteration that enables system to plan action for every 
available state or location. These techniques are very popular 
in stochastic optimization as number of states and actions are 
large. MDP problems are a better fit for online learning as 
future state depends only upon the current state. 

Approximate Dynamic Programing has emerged as a 
powerful tool to tackle such problems. The recurring theme 
of these algorithms enable learning policies quickly and 
efficiently and also in online setting. 

In this paper, we will discuss the implementation of 
Blockchain using Hyperledger Fabric and policy iteration 
algorithm for smart allocation and distribution that will be 
implemented using MDP Tool Box in R. The entire setup has 
been done on Google Cloud platform (GCP). 
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2. HYPERLEDGER FABRIC 

Hyperledger is Blockchain project that follows a design 
philosophy that includes a modular extensible approach, 
interoperability, an emphasis on highly secure solutions, a 
token-agnostic approach with no native crypto-currency and 
ease of use. 

Smart Contract is a business logic running on a Blockchain. 
These smart contracts can be as simple just as a field update 
or they may be complex as hundreds of rules executed with 
interdependencies. There are two types of smart contracts: 

(a) Installed Smart Contracts: They install business logic 
on the validators in the network before the network 
is launched. 

(b) On-Chain Smart Contracts: They deploy business 
logic as a transaction committed to the Blockchain 
and then called by subsequent transactions.  

A smart contract in Hyperledger is a chain code that can be 
written in Go or Java-script language. It runs in secure 
Docker container that remains isolated from the endorsing 
peer processes. Chaincode initializes and manages the ledger 
state through transactions submitted by applications. There 
are two types of chaincode, (i) system chaincode and (ii) 
application chaincode. A chaincode starts with a package 
that encapsulates critical metadata about the chaincode that 
includes name, version and counterparty signatures to 
ensure the integrity of the code and metadata [11]. The 
Hyperledger services can be categorized as (i) Identity, (ii) 
Policy, (iii) Blockchain, (iv) Transactions, (v) Smart 
Contracts. 

Modular Hyperledger is developing modular, extensible 
frameworks with common building blocks that can be 
reused. This modular approach enables developers to 
experiment with different types of components as they 
evolve, and to change individual components without 
affecting the rest of the system. This helps developers to 
create components that can be combined to build distributed 
ledger solutions well-suited to different requirements. This 
modular approach also means that a diverse community of 
developers can work independently on different modules, 
and re-use common modules across multiple projects [12]. 

 

 

3. SMART DISTRIBUTION  

The smart distribution is a system that relies on demand and 
fulfilment according to the cost and transition probability of 
moving from one state to other. Here is a detailed 
description: 

3.1 Markov Decision Process  

A Markov Decision Process [1], [3], [5] is a controlled 
stochastic process satisfying the Markov property with costs 
assigned to the state transitions. A Markov Decision problem is 
a MDP with a performance criterion. Solution to a Markov 
Decision problem is a policy that maps state to actions and 
tries to determine the transitions that minimize the cost or 
maximize the reward according to the performance criteria. 

The environment evolves probabilistically occupying a finite 
set of discrete states and for each environmental state there 
is a finite set of possible actions that may be taken by the 
learning system. Every time the learning system or agent 
takes an action, certain cost is incurred. States are observed 
and actions are taken with cost incurred at discrete time [10]. 
Most importantly, the transition probability from state i to 
state j depends entirely on the current state i and 
corresponding action aik where i the present state and k is the 
number of actions available. 

A Markov decision process illustrates the dynamics of an 
agent interacting with the stochastic environment. A policy 
π is a mapping from states to actions. If the policy is 
independent of the current stage, it is said to be stationary. A 
fundamental outcome of MDPs is that there exists a 
stationary policy that dominates or has equal cost to every 
other policy (Bellman, 1957). Such policy is termed as optimal 
policy and total cost that it assigns to every state is called as 
the optimal cost. A ε-optimal solution is a policy whose total 
cost for every state is in ε difference from the optimal cost. In 
these types of optimality condition, we shall remain focused 
upon total cost function which is unique but optimal policy 
may not be unique. To understand this we need to see the 
expected discounted cumulative cost performance criteria [3]. 

In the expected discounted cumulative cost criteria , the cost 
of the path traversed by policy in all the time steps is 
discounted by a factor γ such that  0 < γ < 1 for every 
instantaneous time step. 
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Fig 1: Agent-Environment Interaction and reward flow. 
(Courtesy: Sutton and Barto) 

A finite MDP can be defined by the tuple combination of 
state and action. The probability of moving from state ‘s’ to   
‘s`’ with action ‘a’ can be denoted as: 
 
𝑃𝑃(𝑠𝑠`|𝑠𝑠, 𝑎𝑎) = Pr (St+1=s`| St=s, At = a)  
 
We can represent our system as being in state ‘s’ at time ‘t’. 
If we choose action ‘a’ and then we let a probability p(s`|s, a) 
be defined that we land in state’s`’ from ‘s’. If the 
contribution /reward for action ‘a’ in state ‘s’ be C(s, a), then 
we can find best action by solving Bellman’s optimality 
equation as: 
 
V(s) = maxa (C(s, a) + γ Σs` p(s`|s, a) V(s`))            eq. (1)    
 
Widely used algorithms for solving MDPs are iterative 
methods. The one implemented in the model used for this 
paper is policy iteration [4]. Later we will check the 
performance of Value Iteration and LP models as well. Policy 
Iteration algorithms has two phases that run sequentially in 
the same iteration. (i) Policy Value Determination (ii) Policy 
Improvement. 
 
The basic policy iteration algorithm works as: 

1. Let π` be a deterministic stationary policy. 
2. Loop 

(a) Set π to be π`. (This step allocates value of 
arbitrary policy that is considered as stationary) 
 

(b) Determine, for all i ͼ Ωs, Eπ(Σγ| i) by solving the 
set of N equations in N unknowns described by 
equation 1. Eπ(Σγ| i) is estimated value of V(s) 
 

(c) For each i ͼ Ωs , if there exists some k ͼ ΩA 
(action) such that  
 
[ Cik  + 𝛾𝛾 𝛴𝛴 𝑝𝑝ijk Eπ(Σγ| j)] < Eπ(Σγ| i) 
 
(Where pijk is the probability of transition from 
state ‘i’ to state ‘j’ for any action ‘k’.) 
Then set π` (i) to be k else set π` (i) to be π (i). 
 

(d) Repeat loop if π ≠ π`. 
 

3. Return policy π. 
 

3.2 Dynamic Programing  
 

Stochastic optimization problems vary in notation and that’s 
the reason why contextual problems related to MDPs arise. 
This also causes issues while communicating between 
different communities like decision science, control systems 
or operational research. 
 
According to Haykin, “A dynamic programming problem 
can be of finite or infinite horizon”. ADP (Approximate 
Dynamic programing) largely used for solving finite horizon 
problems is both a modelling and algorithmic framework 
[4].This is one way to solve the Bellman equation by 
modelling stochastic optimization problem in (i) State 
Variables, (ii) Decision/Actions/Controls (iii) Exogenous 
Information (probability distribution of physical system) .It 
addresses the issues that Discrete MDPs could not address 
i.e. High Dimension of decision or action variable. It has to 
overcome problem of multi-dimensional state variable as 
well as in large action space, both state and action increase 
the dimension of the problem. This has been referred as 
“curse of dimensionality”.  

 
 

3.3 Bellman Optimality and Residuals 
 
Dynamic programing technique rests on very simple idea 
known as the principle of optimality. 
“An optimal policy has the property that whatever the initial 
state and initial decisions are, the remaining decisions must 
contribute an optimal policy with regard to the state 
resulting from the first decision” [10]. That means for any 
state ‘i’ and ‘i+1’ somewhere in the middle of state space 
graph, expected value of state ‘i+1’ will depend upon state ‘i’. 
This follows Markov property that future value is only 
dependent upon the present value. At every step in state 
space there will exist an action yielding better or equal 
reward for the next future state. The sequential set of these 
actions is an optimal policy.  
 
For policy iteration algorithm, we need to define the 
maximum no. of iterations for which the algorithm should 
run and find an optimal or near optimal policy. This 
maximum number can be set in advance or determined by 
using stopping rule. By examining the Bellman residual 
during value iteration and stopping when it gets below a 
threshold as ε`=ε(1-γ)/(2γ) where ε is the maximum 
difference between nth and (n-1)th state value function  as 
proposed by “Williams and Baird” [3]. 
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ε-optimal policy is defined as where expected value of the 
state-action pair has a nominal difference with total cost 
discounted in the iteration. So when the condition is reached, 
iterations shall stop. After n iterations the estimated total cost 
function can differ from the optimal total cost function by no 
more than 2Mγn / (1-γ) at any state. M is the maximum 
magnitude of instantaneous cost [Tseng],[3]. 
 
 
4. SYNCHRO-MODAL DISTRIBUTION AND SMART 
CONTRACT IMPLEMENTATION  
 
4.1 Blockchain – Hyperledger Fabric Design 
A smart contract in Hyperledger Fabric is a program called 
as chain code. Chain code can be written in Go Language or 
Java Script (node.js) in Hyperledger. Chaincode initializes 
and manages ledger by the transactions submitted by the 
applications using the REST interface.  

A chaincode typically handles business logic that members 
of the network have agreed to. The state created by a 
chaincode is scoped exclusively to that chaincode and can’t 
be accessed directly by another chaincode. 

Transactions defined in the chaincode: 

1. Upload/create asset for the Hyperledger 
Inventory. 

2. Place order request for destinations. 
3. Transfer asset from local warehouse to the 

destination upon demand arrival. 
4. Transfer asset from central ware-house to local 

warehouse. 

Transaction of upload asset is straight forward and a request 
to add a new part will be done. Whereas transaction like 
transfer of asset or part will be based upon availability of 
parts. These transactions could be more complex when 
implemented. 

The query file contains the query to retrieve “assigned 
status” request from Couch DB and same can be stored in 
databases or flat files. In current implementation, we have 
used csv files to get the information and they are saved 
manually to the directory path for R server by the analyst. 

 

4.2 Design of Policy Iteration 

The proposed solution is inspired from a synchro-modal of 
allocation and supplies as described in [1]. The dynamic 
demand fulfilment as in [2] is based upon approximation of 
relative value function which addresses transit behaviour for 

stock out probability for any part supply. This paper is 
focused upon the planning part of vehicle fleet to meet the 
demand and hence have designed MDP process per vehicle. 
Same vehicle carries parts for delivery to multiple 
destinations with aim to incur minimum cost of logistics, 
penalty due to SLA breach which is assumed as certain 
percentage of the logistics cost for our model. There is a 
specific calculation provided in [2] for generating the final 
cost. This cost matrix/reward is calculated as per the rules of 
penalty for late delivery. Although the cost matrix will have 
state to state transfer cost and that includes time factor based 
cost of state transfer and since it is not a route optimization 
but a decision problem so we are not interested in point to 
point cost but we need to find the impact of traversing a path. 

The main assumptions have been followed as in [2]. There 
are echelon model as central warehouse, local warehouse 
and destinations. 

1. The central warehouse has ample stock. In real 
scenarios we often see that the central warehouse 
can obtain new items from multiple channels such 
as regular supplies, emergency suppliers etc.  

2. Part request from each customer follow an 
independent Poisson process. This is a common 
assumption. 

3. Inventories at local warehouse are controlled 
through continuous time based stock policies. 
Though as per the rule there will be a one-to-one 
replenishment from central warehouse. But there is 
a rule for part transfer from central warehouse to 
local warehouse based upon request from local 
warehouse or an auto transfer on the smart contract. 

4. Service deadlines, penalty cost and delivery times 
are such that it is never beneficial to backorder 
demand. 

5. Destinations are located in the same geographical 
area. 
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EFig 2.   Distribution Layout  
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The layout defines a Central warehouse, two local 
warehouses and multiple destinations. These destinations 
request part from the LW. Demand overflow is not modelled 
in this paper. We solve the Bellman optimal solution using 
the MDPToolBox with ε-greedy approach. This is 
approximate dynamic programing to estimate an optimal 
solution of policies in a finite horizon condition. As 
described [1] in synchro-modal planning, it is possible to 
change the transportation plan i.e. the services and transfer 
needed to bring a freight from its origin to its destination at 
any point in time. Even though the planner might have a 
complete plan at a given moment, only a part of such a plan 
is implemented and rest can be re-estimated via a real time 
feed of exogenous information to calculate transition 
probability. That would mean that if a vehicle has a plan that 
maximizes the reward as {s1, s2, s3, s4, s5} and while the 
agent/vehicle is at {s3} and new transition probability is 
received or the reward has changed, a new policy can be 
rolled out with minimal time of processing. 

Unlike [2], this paper suggests to prepare a plan with optimal 
policies and re-evaluate and publish as required. 

First we design our MDP model by capturing the probability 
of transition. In the experiment setup it has been simulated 
using a log-normal distribution. Second, we evaluate the policy 
iteration algorithm with value iteration and LP model to 
derive the sequence of actions and compare the performance 
over system time and iterations. 

4.3 MDPToolBox 

This is an R package authored by Iadine Chades, Guillaume 
Chapron, Marie-Josee Cros, Frederick Garcia, and Regis 
Sabbadin. It provides functions like mdp_check ( ), 
mdp_policy_iteration ( ), mdp_value_iteration ( ), mdp_LP ( 
) etc. to implement and solve MDP problems. In this setup 
we have used this package to solve the allocation problem. 

Analyst from local warehouses will run a script to launch R 
server on Google cloud platform. This script will have start 
and stop functions available in a package called 
“googleComputeEngineR” as gce_vm_start ( ) and 
gce_vm_stop ( ). Once R server starts, program to run Policy 
Iteration algorithm can be invoked from R console or 
command prompt. In current implementation as we are 
using csv files in the directory path, so analyst can easily run 
program from R console. 

4.4 Technology Stack 

The technology stack used for the implementation is 
defined as: 

• GCP Account 
• Linux Machine with Ubuntu instance 
• Hyperledger fabric 
• NPM package  
• Composer Playground 
• Node-Red 
• R server on n1-highmem-2 machine  
• R studio on local machines for analyst 

4.5 Experiment and Result 

We have conducted two different experiments where we 
have tried Gamma values in the range of 0.65 to 0.99 with 
Experiment.1 as state=100 and available actions=100 so 
resulting into a 100x100x100 [state x action x state] data 
structure. The transition probability matrix is sparse and 
some of the reward values have been converted to negative. 

Fig 3 shows the relation between the discount rate and CPU 
time to calculate a policy on x86_64 windows machine with 
INTEL core i-7 4600 CPU with R version of 3.5.1. We can 
observe that as the discount rate is close to 1 the CPU time as 
higher and it comes down to 0.25 sec with discount rate close 
to 0.75. 

Experiment.2 uses a 1000x1000x100 problem where 
states=1000 and actions=100. So there are 1000 states 
available for the agent and it can perform 100 different 
actions per state. 

 

Fig 3. CPU time and Gamma (discount rate) for 100 
x100x100 problem. 

This problem requires a data structure that will consume 760 
MB of RAM space. So if the actions increase to 1000 then 
space required will be 7.6 GB. Fig 4, shows that as discount 
rate is 0.99, CPU time is 21.48 secs and its lowest for discount 
rate 0.65 with 12.63 secs. Although it may not appear very 
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significant for single policy but when solving multiple MDP 
problems and sub-problems this factor multiplies and plays 
an important role in computation cost and model. 

 

Fig 4. CPU Time- Gamma (1000x1000x100 problem) 

When tried same experiment with LP model, it took more 
than 30 mins to solve the same problem. 

CONCLUSIONS 

With the combination of Policy Iteration over choice of 
destination and smart contract management OEMs can 
efficiently manage supply chains. The setup remains custom 
and complexity varies according to the organization. Smart 
contracts ensure part assignment is according to the rule and 
Policy Iteration makes sure that the state next chosen gives 
the best reward value and also the ability to solve the sub 
problem is advantage when real time information flows in. 
The computation costs is very low as the R server is launched 
only when needed and hence this kind of setup is viable 
option for logistics partners of OEMs.  
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