
International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 875
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

AI-based Distribution & Smart Contract for OEMs
using Reinforcement Learning and Hyperledger

Fabric
Shivam Rai, Niraj Kesarwani, Siddharth Parashar

Abstract: OEM (original equipment manufacturers) Supply Chain Management always require a mechanism to ensure trust via contract
methods and intelligent allocation of delivery load & logistics to save cost. Smart Contracts on Blockchain technologies is one of the best
suited mechanisms to ensure trust in contracts. These contracts are immutable and transparent to related participants. There are multiple
optimization methods being used in the industry to address demand allocation problems but as the size of the problem grows most of the
methods become inefficient in performance and practicality. We formulate MDP (Markov Decision Process) to model this situation
.Problem of dimensions increasing due to state and action increment as the horizon increases has been described as “Curse of
Dimensionality” by Bellman who addressed the problem with condition of optimality. Policy Iteration algorithm is a known methodology in
reinforcement learning that addresses the problem of decision making by formulating a deterministic in cost or reward and probabilistic in
state transition model that solves a stochastic optimization. Implementation described in this paper has been achieved on Google Cloud
Platform using Hyperledger Fabric, Node-Red and R Server. The text describes the stack architecture, flow and algorithm and also
focuses upon cost viability of the solution.

Index Terms: Artificial Intelligence, Markov Decision Process, Policy Iteration, Hyperledger, Smart Contract, Blockchain,
Distribution System

1. INTRODUCTION

Smart distribution systems and contract management is
indispensable for the business in Supply Chain
Management. So the contracts between the Logistics partners
and Warehouse distribution system requires a method that
can smartly manage the contracts as “law-of-code” and is
immutable.

Blockchain based application are gaining momentum in
SCM domain due to distributed application nature and
contracts being executed upon rules and security of the
artefacts. The participants cannot change what has been
committed to the chain and hence immutability is one core
strength of Blockchain applications. Participants only have a
choice of being or not being part of the network.

To allocate demand and plan distribution of the assets to the
customers or destinations require an optimization based
upon cost of the delivery and SLA.

--

“Authors are member of Professional Services Group at TIBCO
Software India”

There are a few methods that involve linear programming
approach but are deterministic and do not address sub-
problem scenarios .Hence they can’t be implemented for
real-time systems.

There are algorithms that are widely used in Artificial
Intelligence domain like Markov Decision Process with
Policy Iteration that enables system to plan action for every
available state or location. These techniques are very popular
in stochastic optimization as number of states and actions are
large. MDP problems are a better fit for online learning as
future state depends only upon the current state.

Approximate Dynamic Programing has emerged as a
powerful tool to tackle such problems. The recurring theme
of these algorithms enable learning policies quickly and
efficiently and also in online setting.

In this paper, we will discuss the implementation of
Blockchain using Hyperledger Fabric and policy iteration
algorithm for smart allocation and distribution that will be
implemented using MDP Tool Box in R. The entire setup has
been done on Google Cloud platform (GCP).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 876
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

2. HYPERLEDGER FABRIC

Hyperledger is Blockchain project that follows a design
philosophy that includes a modular extensible approach,
interoperability, an emphasis on highly secure solutions, a
token-agnostic approach with no native crypto-currency and
ease of use.

Smart Contract is a business logic running on a Blockchain.
These smart contracts can be as simple just as a field update
or they may be complex as hundreds of rules executed with
interdependencies. There are two types of smart contracts:

(a) Installed Smart Contracts: They install business logic
on the validators in the network before the network
is launched.

(b) On-Chain Smart Contracts: They deploy business
logic as a transaction committed to the Blockchain
and then called by subsequent transactions.

A smart contract in Hyperledger is a chain code that can be
written in Go or Java-script language. It runs in secure
Docker container that remains isolated from the endorsing
peer processes. Chaincode initializes and manages the ledger
state through transactions submitted by applications. There
are two types of chaincode, (i) system chaincode and (ii)
application chaincode. A chaincode starts with a package
that encapsulates critical metadata about the chaincode that
includes name, version and counterparty signatures to
ensure the integrity of the code and metadata [11]. The
Hyperledger services can be categorized as (i) Identity, (ii)
Policy, (iii) Blockchain, (iv) Transactions, (v) Smart
Contracts.

Modular Hyperledger is developing modular, extensible
frameworks with common building blocks that can be
reused. This modular approach enables developers to
experiment with different types of components as they
evolve, and to change individual components without
affecting the rest of the system. This helps developers to
create components that can be combined to build distributed
ledger solutions well-suited to different requirements. This
modular approach also means that a diverse community of
developers can work independently on different modules,
and re-use common modules across multiple projects [12].

3. SMART DISTRIBUTION

The smart distribution is a system that relies on demand and
fulfilment according to the cost and transition probability of
moving from one state to other. Here is a detailed
description:

3.1 Markov Decision Process

A Markov Decision Process [1], [3], [5] is a controlled
stochastic process satisfying the Markov property with costs
assigned to the state transitions. A Markov Decision problem is
a MDP with a performance criterion. Solution to a Markov
Decision problem is a policy that maps state to actions and
tries to determine the transitions that minimize the cost or
maximize the reward according to the performance criteria.

The environment evolves probabilistically occupying a finite
set of discrete states and for each environmental state there
is a finite set of possible actions that may be taken by the
learning system. Every time the learning system or agent
takes an action, certain cost is incurred. States are observed
and actions are taken with cost incurred at discrete time [10].
Most importantly, the transition probability from state i to
state j depends entirely on the current state i and
corresponding action aik where i the present state and k is the
number of actions available.

A Markov decision process illustrates the dynamics of an
agent interacting with the stochastic environment. A policy
π is a mapping from states to actions. If the policy is
independent of the current stage, it is said to be stationary. A
fundamental outcome of MDPs is that there exists a
stationary policy that dominates or has equal cost to every
other policy (Bellman, 1957). Such policy is termed as optimal
policy and total cost that it assigns to every state is called as
the optimal cost. A ε-optimal solution is a policy whose total
cost for every state is in ε difference from the optimal cost. In
these types of optimality condition, we shall remain focused
upon total cost function which is unique but optimal policy
may not be unique. To understand this we need to see the
expected discounted cumulative cost performance criteria [3].

In the expected discounted cumulative cost criteria , the cost
of the path traversed by policy in all the time steps is
discounted by a factor γ such that 0 < γ < 1 for every
instantaneous time step.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 877
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Fig 1: Agent-Environment Interaction and reward flow.
(Courtesy: Sutton and Barto)

A finite MDP can be defined by the tuple combination of
state and action. The probability of moving from state ‘s’ to
‘s`’ with action ‘a’ can be denoted as:

𝑃𝑃(𝑠𝑠`|𝑠𝑠, 𝑎𝑎) = Pr (St+1=s`| St=s, At = a)

We can represent our system as being in state ‘s’ at time ‘t’.
If we choose action ‘a’ and then we let a probability p(s`|s, a)
be defined that we land in state’s`’ from ‘s’. If the
contribution /reward for action ‘a’ in state ‘s’ be C(s, a), then
we can find best action by solving Bellman’s optimality
equation as:

V(s) = maxa (C(s, a) + γ Σs` p(s`|s, a) V(s`)) eq. (1)

Widely used algorithms for solving MDPs are iterative
methods. The one implemented in the model used for this
paper is policy iteration [4]. Later we will check the
performance of Value Iteration and LP models as well. Policy
Iteration algorithms has two phases that run sequentially in
the same iteration. (i) Policy Value Determination (ii) Policy
Improvement.

The basic policy iteration algorithm works as:

1. Let π` be a deterministic stationary policy.
2. Loop

(a) Set π to be π`. (This step allocates value of
arbitrary policy that is considered as stationary)

(b) Determine, for all i ͼ Ωs, Eπ(Σγ| i) by solving the
set of N equations in N unknowns described by
equation 1. Eπ(Σγ| i) is estimated value of V(s)

(c) For each i ͼ Ωs , if there exists some k ͼ ΩA
(action) such that

[Cik + 𝛾𝛾 𝛴𝛴 𝑝𝑝ijk Eπ(Σγ| j)] < Eπ(Σγ| i)

(Where pijk is the probability of transition from
state ‘i’ to state ‘j’ for any action ‘k’.)
Then set π` (i) to be k else set π` (i) to be π (i).

(d) Repeat loop if π ≠ π`.

3. Return policy π.

3.2 Dynamic Programing

Stochastic optimization problems vary in notation and that’s
the reason why contextual problems related to MDPs arise.
This also causes issues while communicating between
different communities like decision science, control systems
or operational research.

According to Haykin, “A dynamic programming problem
can be of finite or infinite horizon”. ADP (Approximate
Dynamic programing) largely used for solving finite horizon
problems is both a modelling and algorithmic framework
[4].This is one way to solve the Bellman equation by
modelling stochastic optimization problem in (i) State
Variables, (ii) Decision/Actions/Controls (iii) Exogenous
Information (probability distribution of physical system) .It
addresses the issues that Discrete MDPs could not address
i.e. High Dimension of decision or action variable. It has to
overcome problem of multi-dimensional state variable as
well as in large action space, both state and action increase
the dimension of the problem. This has been referred as
“curse of dimensionality”.

3.3 Bellman Optimality and Residuals

Dynamic programing technique rests on very simple idea
known as the principle of optimality.
“An optimal policy has the property that whatever the initial
state and initial decisions are, the remaining decisions must
contribute an optimal policy with regard to the state
resulting from the first decision” [10]. That means for any
state ‘i’ and ‘i+1’ somewhere in the middle of state space
graph, expected value of state ‘i+1’ will depend upon state ‘i’.
This follows Markov property that future value is only
dependent upon the present value. At every step in state
space there will exist an action yielding better or equal
reward for the next future state. The sequential set of these
actions is an optimal policy.

For policy iteration algorithm, we need to define the
maximum no. of iterations for which the algorithm should
run and find an optimal or near optimal policy. This
maximum number can be set in advance or determined by
using stopping rule. By examining the Bellman residual
during value iteration and stopping when it gets below a
threshold as ε`=ε(1-γ)/(2γ) where ε is the maximum
difference between nth and (n-1)th state value function as
proposed by “Williams and Baird” [3].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 878
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

ε-optimal policy is defined as where expected value of the
state-action pair has a nominal difference with total cost
discounted in the iteration. So when the condition is reached,
iterations shall stop. After n iterations the estimated total cost
function can differ from the optimal total cost function by no
more than 2Mγn / (1-γ) at any state. M is the maximum
magnitude of instantaneous cost [Tseng],[3].

4. SYNCHRO-MODAL DISTRIBUTION AND SMART
CONTRACT IMPLEMENTATION

4.1 Blockchain – Hyperledger Fabric Design
A smart contract in Hyperledger Fabric is a program called
as chain code. Chain code can be written in Go Language or
Java Script (node.js) in Hyperledger. Chaincode initializes
and manages ledger by the transactions submitted by the
applications using the REST interface.

A chaincode typically handles business logic that members
of the network have agreed to. The state created by a
chaincode is scoped exclusively to that chaincode and can’t
be accessed directly by another chaincode.

Transactions defined in the chaincode:

1. Upload/create asset for the Hyperledger
Inventory.

2. Place order request for destinations.
3. Transfer asset from local warehouse to the

destination upon demand arrival.
4. Transfer asset from central ware-house to local

warehouse.

Transaction of upload asset is straight forward and a request
to add a new part will be done. Whereas transaction like
transfer of asset or part will be based upon availability of
parts. These transactions could be more complex when
implemented.

The query file contains the query to retrieve “assigned
status” request from Couch DB and same can be stored in
databases or flat files. In current implementation, we have
used csv files to get the information and they are saved
manually to the directory path for R server by the analyst.

4.2 Design of Policy Iteration

The proposed solution is inspired from a synchro-modal of
allocation and supplies as described in [1]. The dynamic
demand fulfilment as in [2] is based upon approximation of
relative value function which addresses transit behaviour for

stock out probability for any part supply. This paper is
focused upon the planning part of vehicle fleet to meet the
demand and hence have designed MDP process per vehicle.
Same vehicle carries parts for delivery to multiple
destinations with aim to incur minimum cost of logistics,
penalty due to SLA breach which is assumed as certain
percentage of the logistics cost for our model. There is a
specific calculation provided in [2] for generating the final
cost. This cost matrix/reward is calculated as per the rules of
penalty for late delivery. Although the cost matrix will have
state to state transfer cost and that includes time factor based
cost of state transfer and since it is not a route optimization
but a decision problem so we are not interested in point to
point cost but we need to find the impact of traversing a path.

The main assumptions have been followed as in [2]. There
are echelon model as central warehouse, local warehouse
and destinations.

1. The central warehouse has ample stock. In real
scenarios we often see that the central warehouse
can obtain new items from multiple channels such
as regular supplies, emergency suppliers etc.

2. Part request from each customer follow an
independent Poisson process. This is a common
assumption.

3. Inventories at local warehouse are controlled
through continuous time based stock policies.
Though as per the rule there will be a one-to-one
replenishment from central warehouse. But there is
a rule for part transfer from central warehouse to
local warehouse based upon request from local
warehouse or an auto transfer on the smart contract.

4. Service deadlines, penalty cost and delivery times
are such that it is never beneficial to backorder
demand.

5. Destinations are located in the same geographical
area.

%3CmxGraphModel%3E%3Croot%3E%3CmxCell%20id%3D%220%22%2F%3E%3CmxCell%20id%3D%221%22%20parent%3D%220%22%2F%3E%3CmxCell%20id%3D%222%22%20value%3D%22Local%20warehouse%201%22%20style%3D%22text%3Bhtml%3D1%3BstrokeColor%3Dnone%3BfillColor%3Dnone%3Balign%3Dcenter%3BverticalAlign%3Dmiddle%3BwhiteSpace%3Dwrap%3Brounded%3D0%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22210%22%20y%3D%22330%22%20width%3D%2290%3

EFig 2. Distribution Layout

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 879
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

The layout defines a Central warehouse, two local
warehouses and multiple destinations. These destinations
request part from the LW. Demand overflow is not modelled
in this paper. We solve the Bellman optimal solution using
the MDPToolBox with ε-greedy approach. This is
approximate dynamic programing to estimate an optimal
solution of policies in a finite horizon condition. As
described [1] in synchro-modal planning, it is possible to
change the transportation plan i.e. the services and transfer
needed to bring a freight from its origin to its destination at
any point in time. Even though the planner might have a
complete plan at a given moment, only a part of such a plan
is implemented and rest can be re-estimated via a real time
feed of exogenous information to calculate transition
probability. That would mean that if a vehicle has a plan that
maximizes the reward as {s1, s2, s3, s4, s5} and while the
agent/vehicle is at {s3} and new transition probability is
received or the reward has changed, a new policy can be
rolled out with minimal time of processing.

Unlike [2], this paper suggests to prepare a plan with optimal
policies and re-evaluate and publish as required.

First we design our MDP model by capturing the probability
of transition. In the experiment setup it has been simulated
using a log-normal distribution. Second, we evaluate the policy
iteration algorithm with value iteration and LP model to
derive the sequence of actions and compare the performance
over system time and iterations.

4.3 MDPToolBox

This is an R package authored by Iadine Chades, Guillaume
Chapron, Marie-Josee Cros, Frederick Garcia, and Regis
Sabbadin. It provides functions like mdp_check (),
mdp_policy_iteration (), mdp_value_iteration (), mdp_LP (
) etc. to implement and solve MDP problems. In this setup
we have used this package to solve the allocation problem.

Analyst from local warehouses will run a script to launch R
server on Google cloud platform. This script will have start
and stop functions available in a package called
“googleComputeEngineR” as gce_vm_start () and
gce_vm_stop (). Once R server starts, program to run Policy
Iteration algorithm can be invoked from R console or
command prompt. In current implementation as we are
using csv files in the directory path, so analyst can easily run
program from R console.

4.4 Technology Stack

The technology stack used for the implementation is
defined as:

• GCP Account
• Linux Machine with Ubuntu instance
• Hyperledger fabric
• NPM package
• Composer Playground
• Node-Red
• R server on n1-highmem-2 machine
• R studio on local machines for analyst

4.5 Experiment and Result

We have conducted two different experiments where we
have tried Gamma values in the range of 0.65 to 0.99 with
Experiment.1 as state=100 and available actions=100 so
resulting into a 100x100x100 [state x action x state] data
structure. The transition probability matrix is sparse and
some of the reward values have been converted to negative.

Fig 3 shows the relation between the discount rate and CPU
time to calculate a policy on x86_64 windows machine with
INTEL core i-7 4600 CPU with R version of 3.5.1. We can
observe that as the discount rate is close to 1 the CPU time as
higher and it comes down to 0.25 sec with discount rate close
to 0.75.

Experiment.2 uses a 1000x1000x100 problem where
states=1000 and actions=100. So there are 1000 states
available for the agent and it can perform 100 different
actions per state.

Fig 3. CPU time and Gamma (discount rate) for 100
x100x100 problem.

This problem requires a data structure that will consume 760
MB of RAM space. So if the actions increase to 1000 then
space required will be 7.6 GB. Fig 4, shows that as discount
rate is 0.99, CPU time is 21.48 secs and its lowest for discount
rate 0.65 with 12.63 secs. Although it may not appear very

0

5

10

15

20

25

0 0.5 1 1.5

CP
U

 T
im

e
(s

ec
)

Gamma

CPU Time - Gamma (100x100x100)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 880
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

significant for single policy but when solving multiple MDP
problems and sub-problems this factor multiplies and plays
an important role in computation cost and model.

Fig 4. CPU Time- Gamma (1000x1000x100 problem)

When tried same experiment with LP model, it took more
than 30 mins to solve the same problem.

CONCLUSIONS

With the combination of Policy Iteration over choice of
destination and smart contract management OEMs can
efficiently manage supply chains. The setup remains custom
and complexity varies according to the organization. Smart
contracts ensure part assignment is according to the rule and
Policy Iteration makes sure that the state next chosen gives
the best reward value and also the ability to solve the sub
problem is advantage when real time information flows in.
The computation costs is very low as the R server is launched
only when needed and hence this kind of setup is viable
option for logistics partners of OEMs.

ACKNOWLEDGMENTS

We would like to thank TIBCO Software Inc. for being an
incubator of innovation and our colleague Ashish Rajput, an
integration specialist for the assistance. Special thanks to
IIMM (Indian Institute of Materials Management) for
helping professionals with niche knowledge in SCM.

REFERENCES

[1]. Arturo Perez Riverra, Martjin Mes, “Service and Transfer selection
for freights in a synchromodal network”.WP504, 2016, Research School
for Operations Management and Logistics, Eindhoven.

[2]. H.G.H Tiemessen, M. Fleischmann, G.J van Howtum, JAEE von
Numen , E. Pratisini , “Dynamic demand fulfilment in spare parts
networks with multiple customer classes”.2012, Research School for
Operations Management and Logistics , Eindhoven.

[3]. Michael L. Littman, Thomas L. Dean, Leselia Pack Kaelbling, “On
the complexity of solving Markov Decision problems”. Brown
University.

[4]. Warren, B. Powell, “Approximate Dynamic Programming, chapter:
Modelling”, Wiley & Sons Inc. 2010.

[5]. Richard S. Sutton, Andrew G. Barto, “Reinforcement Learning: An
Introduction”, Second Edition, MIT Press, 2012.

[6]. Nils J. Nilsson, “Artificial Intelligence: A new synthesis”, Stanford
University, Harcourt Asia, 2000.

[7]. Tommi Jakkala, Satinder P. Singh, Michael L. Jordan,
“Reinforcement Learning Algorithm for Partially Observable Markov
Decision Problems”. Department of Brain and Cognitive Science, MIT.

[8]. Lucian Busoniu, Robert Babuska, Bart De Schutter , Damian Ernst,
“Reinforcement Learning and dynamic programing using function
approximators”, http:www.dcsc.tudelft.nl/rlbook.

[9]. Csaba Szepesvari,” Algorithm for reinforcement learnings”,
Synthesis lectures on Artificial Intelligence and Machine Learning, 2009,
Morgan & Claypool Publishers.

[10]. Simon Haykin, “Neural Networks: A comprehensive foundation”,
Second edition, Pearson Press.

[11]. Imran Bashir, “Mastering Blockchain: Distributed Ledgers,
decentralization and smart contracts explained”, Packt Publishing Ltd,
ISBN 978-1-78712-544-5.

[12]. White Paper, “Hyperledger Architecture: Vol 2 Smart Contracts”,
wiki.hyperledger.org/groups/architecture/architecture-wg

0

5

10

15

20

25

0 0.5 1 1.5

CP
U

 T
im

e
 (s

ec
s)

Gamma

CPU Time- Gamma (1000x1000x100)

IJSER

http://www.ijser.org/

